Show more...Show more...
Record Information
Version1.0
Creation Date2016-09-30 22:34:43 UTC
Update Date2020-06-04 22:31:33 UTC
BMDB IDBMDB0000673
Secondary Accession Numbers
  • BMDB00673
Metabolite Identification
Common NameLinoleic acid
DescriptionLinoleic acid, also known as LA or linoleate, belongs to the class of organic compounds known as lineolic acids and derivatives. These are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. Linoleic acid exists as a liquid, very hydrophobic, practically insoluble (in water), and relatively neutral molecule. Linoleic acid exists in all living organisms, ranging from bacteria to humans. Linoleic acid is a potentially toxic compound. Linoleic acid has been found to be associated with several diseases known as hypertension, ulcerative colitis, essential hypertension, and thyroid cancer; also linoleic acid has been linked to the inborn metabolic disorders including isovaleric acidemia.
Structure
Thumb
Synonyms
Chemical FormulaC18H32O2
Average Molecular Weight280.4455
Monoisotopic Molecular Weight280.240230268
IUPAC Name(9Z,12Z)-octadeca-9,12-dienoic acid
Traditional Namelinoleic
CAS Registry Number60-33-3
SMILES
CCCCC\C=C/C\C=C/CCCCCCCC(O)=O
InChI Identifier
InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h6-7,9-10H,2-5,8,11-17H2,1H3,(H,19,20)/b7-6-,10-9-
InChI KeyOYHQOLUKZRVURQ-HZJYTTRNSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as lineolic acids and derivatives. These are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassLineolic acids and derivatives
Direct ParentLineolic acids and derivatives
Alternative Parents
Substituents
  • Octadecanoid
  • Long-chain fatty acid
  • Fatty acid
  • Unsaturated fatty acid
  • Straight chain fatty acid
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Exogenous
BiofunctionNot Available
ApplicationNot Available
Cellular locations
  • Cell membrane
  • Cytoplasm
  • Membrane
  • Myelin sheath
Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point-8.5 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP7.05SANGSTER (1993)
Predicted Properties
PropertyValueSource
logP7.06ALOGPS
logP6.42ChemAxon
logS-6.3ALOGPS
pKa (Strongest Acidic)4.99ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3 ŲChemAxon
Rotatable Bond Count14ChemAxon
Refractivity88.52 m³·mol⁻¹ChemAxon
Polarizability35.86 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (1 TMS)splash10-000t-7900000000-b6ee03c4800464c37471View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (1 TMS)splash10-00vi-9300000000-c92dac639ced59eb5dbeView in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 TMS)splash10-003s-9700000000-77e67d7b1a161e6ecfa6View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-000t-7900000000-b6ee03c4800464c37471View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00vi-9300000000-c92dac639ced59eb5dbeView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-003s-9700000000-77e67d7b1a161e6ecfa6View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0007-9750000000-50d69948d56dd2ba6e42View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-0079-9631000000-cc93c24bbf14d81ae9b6View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0f89-0190000000-2be9501b1d4a9fcbd1c0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0uk9-0790000000-7f6e35a591f977bc488eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0udi-0090000000-c56edc2bbf9d6752aec5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - FAB-EBEB (JMS-HX/HX 110A, JEOL) , Negativesplash10-004i-0090000000-baf4579e26c6b393d391View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-004i-0090000000-815c1682b2c59ba96f10View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-004i-0090000000-3406b2b2d5756807e1cdView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-004i-0090000000-2fb4975278fa4d118f43View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-0a6r-9380000000-37f833673c248405c8efView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-0a4i-9200000000-7d34ed5900a17ffe3f9bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 10V, Negativesplash10-004i-0090010000-f8df6099e003402f2566View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF , Negativesplash10-004i-0091021000-0e44779958d5744d873bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 10V, Negativesplash10-004i-0091021000-0e44779958d5744d873bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 20V, Negativesplash10-004i-0091021000-0e44779958d5744d873bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 30V, Negativesplash10-004i-0091021000-0e44779958d5744d873bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 10V, Negativesplash10-004i-0090010000-f8df6099e003402f2566View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF , Negativesplash10-004i-0091021000-0e44779958d5744d873bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 10V, Negativesplash10-004i-0090000000-adbf36f0a17c33ac33f8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 20V, Negativesplash10-004i-0090000000-2747c83af78732eb6e16View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 30V, Negativesplash10-004i-0090000000-a0415b1cb63b4562b40eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03di-0090000000-8bdf8d54a29f73494242View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0239-4590000000-e5ee57553b064eae2efeView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-00rf-9830000000-b26ba057a2b4d135b478View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-0090000000-f1e9e4b543f7d4f48bf8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-01ti-0090000000-665523c6142ff4e39c96View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9240000000-dca36a25ad7519d500c3View in MoNA
MSMass Spectrum (Electron Ionization)splash10-015a-9200000000-a193c27810bedf93c498View in MoNA
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 90 MHz, CDCl3, experimental)Not AvailableView in JSpectraViewer
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, CDCl3, experimental)Not AvailableView in JSpectraViewer
Biological Properties
Cellular Locations
  • Cell membrane
  • Cytoplasm
  • Membrane
  • Myelin sheath
Biospecimen Locations
  • Adipose Tissue
  • Blood
  • Epidermis
  • Erythrocyte
  • Fibroblasts
  • Intestine
  • Kidney
  • Liver
  • Mammary Gland
  • Milk
  • Muscle
  • Neuron
  • Oocyte
  • Placenta
  • Platelet
  • Prostate Tissue
  • Ruminal Fluid
  • Spleen
Pathways
Normal Concentrations
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected but not QuantifiedNot QuantifiedNot SpecifiedNot Specified
Heat stress
details
HMDB IDHMDB0000673
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB006287
KNApSAcK IDC00001224
Chemspider ID4444105
KEGG Compound IDC01595
BioCyc IDLINOLEIC_ACID
BiGG ID37956
Wikipedia LinkLinoleic_acid
METLIN ID191
PubChem Compound5280450
PDB IDNot Available
ChEBI ID17351
References
Synthesis ReferenceWalborsky, Harry M.; Davis, Robert H.; Howton, David R. A total synthesis of linoleic acid. Journal of the American Chemical Society (1951), 73 2590-4.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Soyeurt H, Dardenne P, Dehareng F, Lognay G, Veselko D, Marlier M, Bertozzi C, Mayeres P, Gengler N: Estimating fatty acid content in cow milk using mid-infrared spectrometry. J Dairy Sci. 2006 Sep;89(9):3690-5. doi: 10.3168/jds.S0022-0302(06)72409-2. [PubMed:16899705 ]
  2. Jensen RG: The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci. 2002 Feb;85(2):295-350. doi: 10.3168/jds.S0022-0302(02)74079-4. [PubMed:11913692 ]
  3. Auldist MJ, Walsh BJ, Thomson NA: Seasonal and lactational influences on bovine milk composition in New Zealand. J Dairy Res. 1998 Aug;65(3):401-11. [PubMed:9718493 ]
  4. Jensen RG, Ferris AM, Lammi-Keefe CJ: The composition of milk fat. J Dairy Sci. 1991 Sep;74(9):3228-43. doi: 10.3168/jds.S0022-0302(91)78509-3. [PubMed:1779072 ]
  5. Colman E, Fokkink WB, Craninx M, Newbold JR, De Baets B, Fievez V: Effect of induction of subacute ruminal acidosis on milk fat profile and rumen parameters. J Dairy Sci. 2010 Oct;93(10):4759-73. doi: 10.3168/jds.2010-3158. [PubMed:20855010 ]
  6. Keenan TW, Morre DJ, Olson DE, Yunghans WN, Patton S: Biochemical and morphological comparison of plasma membrane and milk fat globule membrane from bovine mammary gland. J Cell Biol. 1970 Jan;44(1):80-93. [PubMed:5409465 ]
  7. van Gastelen S, Antunes-Fernandes EC, Hettinga KA, Dijkstra J: Relationships between methane emission of Holstein Friesian dairy cows and fatty acids, volatile metabolites and non-volatile metabolites in milk. Animal. 2017 Sep;11(9):1539-1548. doi: 10.1017/S1751731117000295. Epub 2017 Feb 21. [PubMed:28219465 ]
  8. Kurt J. Boudonck, Matthew W. Mitchell, Jacob Wulff and John A. Ryals (2009). Kurt J. Boudonck, Matthew W. Mitchell, Jacob Wulff and John A. Ryals. Characterization of the biochemical variability of bovine milk using metabolomics. Metabolomics (2009) 5:375?386. Metabolomics.
  9. M. Ferrand, B. Huquet. S. Barbey, F. Barillet, F. Faucon, H. Larroque, O. Leray, J.M. Trommenschlager, M. Brochard (2011). M. Ferrand et al. Determination of fatty acid profile in cow's milk using mid-infrared spectrometry: Interest of applying a variable selection by genetic algorithms before a PLS regression. Chemometrics and Intelligent Laboratory Systems 106 (2011) 183?189. Chemometrics and Intelligent Laboratory Systems.
  10. Lawrence K. Creamer, Alastair K.H. MacGibbon (1996). Lawrence K. Creamer, Alastair K.H. MacGibbon. Some recent advances in the basic chemistry of milk proteins and lipids. International Dairy J. (1996) 6(6):539-568 doi: 10.1016/0958-6946(96)85309-X. International Dairy Journal.
  11. M.J. Abarghuei, Y. Rouzbehan, A.Z.M Salem, M.J. Zamiri (2014). M.J. Abarghuei, Y. Rouzbehan, A.Z.M Salem, M.J. Zamiri. Nitrogen balance, blood metabolites and milk fatty acid composition of dairy cows fed pomegranate-peel extract. Livestock Science (2014) 164:72-80 doi: 10.1016/j.livsci.2014.03.021. Livestock Science.
  12. Fooddata+, The Technical University of Denmark (DTU) [Link]

Enzymes

General function:
Lipid transport and metabolism
Specific function:
Acts as a fatty acyl-coenzyme A (CoA) desaturase that introduces a cis double bond at carbon 6 of the fatty acyl chain. Involved in biosynthesis of highly unsaturated fatty acids (HUFA) from the essential polyunsaturated fatty acids (PUFA) linoleic acid (LA) (18:2n-6) and alpha-linolenic acid (ALA) (18:3n-3) precursors. Catalyzes the first and rate limiting step in this pathway which is the desaturation of LA (18:2n-6) and ALA (18:3n-3) into gamma-linoleate (GLA) (18:3n-6) and stearidonate (18:4n-3), respectively (By similarity). Subsequently, in the biosynthetic pathway of HUFA n-3 series, desaturates tetracosapentaenoate (24:5n-3) to tetracosahexaenoate (24:6n-3), which is then converted to docosahexaenoate (DHA)(22:6n-3), an important lipid for nervous system function (By similarity). Desaturates palmitate to produce the mono-unsaturated fatty acid sapienate, the most abundant fatty acid in sebum (By similarity). Also desaturates (11E)-octadecenoate (trans-vaccenoate)(18:1n-9), a metabolite in the biohydrogenation pathway of LA (18:2n-6) (By similarity).
Gene Name:
FADS2
Uniprot ID:
A4FV48
Molecular weight:
52533.0
Reactions
Linoleic acid → Gamma-Linolenic aciddetails