Showing metabocard for QH2 (BMDB0001304)
Record Information | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Version | 1.0 | ||||||||||||||||||||||||||||||||
Creation Date | 2016-09-30 22:43:52 UTC | ||||||||||||||||||||||||||||||||
Update Date | 2020-05-21 14:52:19 UTC | ||||||||||||||||||||||||||||||||
BMDB ID | BMDB0001304 | ||||||||||||||||||||||||||||||||
Secondary Accession Numbers |
| ||||||||||||||||||||||||||||||||
Metabolite Identification | |||||||||||||||||||||||||||||||||
Common Name | QH2 | ||||||||||||||||||||||||||||||||
Description | QH2, also known as COQH2 or ubiquinol, belongs to the class of organic compounds known as ubiquinols. These are coenzyme Q derivatives containing a 5, 6-dimethoxy-3-methylbenzene-1,4-diol moiety to which an isoprenyl group is attached at ring position 2(or 6). QH2 is possibly neutral. | ||||||||||||||||||||||||||||||||
Structure | |||||||||||||||||||||||||||||||||
Synonyms |
| ||||||||||||||||||||||||||||||||
Chemical Formula | (C5H8)nC14H20O4 | ||||||||||||||||||||||||||||||||
Average Molecular Weight | Not Available | ||||||||||||||||||||||||||||||||
Monoisotopic Molecular Weight | Not Available | ||||||||||||||||||||||||||||||||
IUPAC Name | Not Available | ||||||||||||||||||||||||||||||||
Traditional Name | Not Available | ||||||||||||||||||||||||||||||||
CAS Registry Number | 56275-39-9 | ||||||||||||||||||||||||||||||||
SMILES | COC1=C(O)C(C)=C(C\C=C(/C)CCC=C(C)C)C(O)=C1OC | ||||||||||||||||||||||||||||||||
InChI Identifier | InChI=1S/C19H28O4/c1-12(2)8-7-9-13(3)10-11-15-14(4)16(20)18(22-5)19(23-6)17(15)21/h8,10,20-21H,7,9,11H2,1-6H3/b13-10+ | ||||||||||||||||||||||||||||||||
InChI Key | RNUCUWWMTTWKAH-JLHYYAGUSA-N | ||||||||||||||||||||||||||||||||
Chemical Taxonomy | |||||||||||||||||||||||||||||||||
Description | belongs to the class of organic compounds known as ubiquinols. These are coenzyme Q derivatives containing a 5, 6-dimethoxy-3-methylbenzene-1,4-diol moiety to which an isoprenyl group is attached at ring position 2(or 6). | ||||||||||||||||||||||||||||||||
Kingdom | Organic compounds | ||||||||||||||||||||||||||||||||
Super Class | Lipids and lipid-like molecules | ||||||||||||||||||||||||||||||||
Class | Prenol lipids | ||||||||||||||||||||||||||||||||
Sub Class | Quinone and hydroquinone lipids | ||||||||||||||||||||||||||||||||
Direct Parent | Ubiquinols | ||||||||||||||||||||||||||||||||
Alternative Parents | |||||||||||||||||||||||||||||||||
Substituents |
| ||||||||||||||||||||||||||||||||
Molecular Framework | Aromatic homomonocyclic compounds | ||||||||||||||||||||||||||||||||
External Descriptors | Not Available | ||||||||||||||||||||||||||||||||
Ontology | |||||||||||||||||||||||||||||||||
Status | Expected but not Quantified | ||||||||||||||||||||||||||||||||
Origin |
| ||||||||||||||||||||||||||||||||
Biofunction | Not Available | ||||||||||||||||||||||||||||||||
Application | Not Available | ||||||||||||||||||||||||||||||||
Cellular locations |
| ||||||||||||||||||||||||||||||||
Physical Properties | |||||||||||||||||||||||||||||||||
State | Solid | ||||||||||||||||||||||||||||||||
Experimental Properties |
| ||||||||||||||||||||||||||||||||
Predicted Properties |
| ||||||||||||||||||||||||||||||||
Spectra | |||||||||||||||||||||||||||||||||
Spectra | |||||||||||||||||||||||||||||||||
Biological Properties | |||||||||||||||||||||||||||||||||
Cellular Locations |
| ||||||||||||||||||||||||||||||||
Biospecimen Locations |
| ||||||||||||||||||||||||||||||||
Pathways |
| ||||||||||||||||||||||||||||||||
Normal Concentrations | |||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||
Abnormal Concentrations | |||||||||||||||||||||||||||||||||
Not Available | |||||||||||||||||||||||||||||||||
External Links | |||||||||||||||||||||||||||||||||
HMDB ID | HMDB0001304 | ||||||||||||||||||||||||||||||||
DrugBank ID | Not Available | ||||||||||||||||||||||||||||||||
Phenol Explorer Compound ID | Not Available | ||||||||||||||||||||||||||||||||
FooDB ID | FDB022543 | ||||||||||||||||||||||||||||||||
KNApSAcK ID | Not Available | ||||||||||||||||||||||||||||||||
Chemspider ID | 4444052 | ||||||||||||||||||||||||||||||||
KEGG Compound ID | C00390 | ||||||||||||||||||||||||||||||||
BioCyc ID | Not Available | ||||||||||||||||||||||||||||||||
BiGG ID | Not Available | ||||||||||||||||||||||||||||||||
Wikipedia Link | Coenzyme Q10 | ||||||||||||||||||||||||||||||||
METLIN ID | 6146 | ||||||||||||||||||||||||||||||||
PubChem Compound | 5280344 | ||||||||||||||||||||||||||||||||
PDB ID | Not Available | ||||||||||||||||||||||||||||||||
ChEBI ID | Not Available | ||||||||||||||||||||||||||||||||
References | |||||||||||||||||||||||||||||||||
Synthesis Reference | Not Available | ||||||||||||||||||||||||||||||||
Material Safety Data Sheet (MSDS) | Not Available | ||||||||||||||||||||||||||||||||
General References | Not Available |
Only showing the first 50 proteins. There are 92 proteins in total.
Enzymes
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- NDUFS7
- Uniprot ID:
- P42026
- Molecular weight:
- 23771.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- NDUFS2
- Uniprot ID:
- P17694
- Molecular weight:
- 52556.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- C5IX89
- Molecular weight:
- 68329.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- MT-ND1
- Uniprot ID:
- P03887
- Molecular weight:
- 35670.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4
- Uniprot ID:
- Q45LU7
- Molecular weight:
- 52058.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4
- Uniprot ID:
- Q6JTG2
- Molecular weight:
- 53800.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- C5IXE1
- Molecular weight:
- 68117.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND2
- Uniprot ID:
- B1NZU0
- Molecular weight:
- 39284.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- Q45M50
- Molecular weight:
- 68155.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- Q45MI0
- Molecular weight:
- 68316.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- Q3L5H4
- Molecular weight:
- 68270.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- Q45LG6
- Molecular weight:
- 68285.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- B1NZ26
- Molecular weight:
- 68270.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- NDUFV2
- Uniprot ID:
- P04394
- Molecular weight:
- 27308.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- Q8HBP4
- Molecular weight:
- 33068.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- B1P0B8
- Molecular weight:
- 68316.0
- General function:
- Energy production and conversion
- Specific function:
- Not Available
- Gene Name:
- ND1
- Uniprot ID:
- B1P0I6
- Molecular weight:
- 35652.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND2
- Uniprot ID:
- Q6JTH0
- Molecular weight:
- 39226.0
- General function:
- Energy production and conversion
- Specific function:
- Not Available
- Gene Name:
- ND1
- Uniprot ID:
- Q45MJ0
- Molecular weight:
- 35661.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- Q7JAL5
- Molecular weight:
- 68286.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4
- Uniprot ID:
- Q8HC63
- Molecular weight:
- 15084.0
- General function:
- Energy production and conversion
- Specific function:
- Not Available
- Gene Name:
- ND1
- Uniprot ID:
- Q6QTH1
- Molecular weight:
- 35656.0
- General function:
- Energy production and conversion
- Specific function:
- Not Available
- Gene Name:
- ND1
- Uniprot ID:
- Q45MC5
- Molecular weight:
- 35700.0
- General function:
- Involved in NADH dehydrogenase (ubiquinone) activity
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND6
- Uniprot ID:
- Q7JAS5
- Molecular weight:
- 19078.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- Q8HC24
- Molecular weight:
- 32995.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- B1P0J6
- Molecular weight:
- 68201.0
- General function:
- Involved in NADH dehydrogenase (ubiquinone) activity
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4L
- Uniprot ID:
- Q3L5T0
- Molecular weight:
- 10765.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4
- Uniprot ID:
- C5IX88
- Molecular weight:
- 52085.0
- General function:
- Energy production and conversion
- Specific function:
- Not Available
- Gene Name:
- ND1
- Uniprot ID:
- Q3L5J7
- Molecular weight:
- 35636.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND6
- Uniprot ID:
- Q85UJ0
- Molecular weight:
- 19044.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4
- Uniprot ID:
- B1P078
- Molecular weight:
- 52113.0
- General function:
- Involved in NADH dehydrogenase (ubiquinone) activity
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND6
- Uniprot ID:
- B1P0N6
- Molecular weight:
- 19018.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND3
- Uniprot ID:
- Q7JAS9
- Molecular weight:
- 13055.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- B1P092
- Molecular weight:
- 68272.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4
- Uniprot ID:
- Q45MX4
- Molecular weight:
- 52129.0
- General function:
- Involved in NADH dehydrogenase (ubiquinone) activity
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- MT-ND6
- Uniprot ID:
- P03924
- Molecular weight:
- 19078.0
- General function:
- Energy production and conversion
- Specific function:
- Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
- Gene Name:
- SDHB
- Uniprot ID:
- Q3T189
- Molecular weight:
- 31518.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- B1P0N5
- Molecular weight:
- 68175.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4
- Uniprot ID:
- Q6JTD6
- Molecular weight:
- 53814.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- Q45LK5
- Molecular weight:
- 68313.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND6
- Uniprot ID:
- B1NZ92
- Molecular weight:
- 19106.0
- General function:
- Energy production and conversion
- Specific function:
- Not Available
- Gene Name:
- ND5
- Uniprot ID:
- A4ZI01
- Molecular weight:
- 11807.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- MT-ND5
- Uniprot ID:
- P03920
- Molecular weight:
- 68286.0
- General function:
- Energy production and conversion
- Specific function:
- Not Available
- Gene Name:
- Not Available
- Uniprot ID:
- Q85E90
- Molecular weight:
- 7295.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized.
- Gene Name:
- NDUFS1
- Uniprot ID:
- P15690
- Molecular weight:
- 79442.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND2
- Uniprot ID:
- Q45M46
- Molecular weight:
- 39220.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4
- Uniprot ID:
- C5IX62
- Molecular weight:
- 52069.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND4
- Uniprot ID:
- Q45MC9
- Molecular weight:
- 52115.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND5
- Uniprot ID:
- Q45LU6
- Molecular weight:
- 68191.0
- General function:
- Energy production and conversion
- Specific function:
- Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
- Gene Name:
- ND2
- Uniprot ID:
- B1P044
- Molecular weight:
- 39224.0
Only showing the first 50 proteins. There are 92 proteins in total.