Record Information
Version1.0
Creation Date2016-10-03 18:35:40 UTC
Update Date2020-05-21 14:52:19 UTC
BMDB IDBMDB0012299
Secondary Accession Numbers
  • BMDB12299
Metabolite Identification
Common NameUbiquinol-6
DescriptionUbiquinol-6 belongs to the class of organic compounds known as 2-polyprenyl-6-methoxyphenols. 2-polyprenyl-6-methoxyphenols are compounds containing a polyisoprene chain attached at the 2-position of a 6-methoxyphenol group. Based on a literature review a small amount of articles have been published on Ubiquinol-6.
Structure
Thumb
Synonyms
ValueSource
DihydroubiquinoneHMDB
Reduced ubiquinoneHMDB
UbiquinolHMDB
Ubiquinol(30)HMDB
Chemical FormulaC39H60O4
Average Molecular Weight592.8913
Monoisotopic Molecular Weight592.449160408
IUPAC Name2-[(2E,6E,10E,14E,18E)-3,7,11,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaen-1-yl]-5,6-dimethoxy-3-methylbenzene-1,4-diol
Traditional Nameubiquinol-6
CAS Registry Number5677-58-7
SMILES
COC1=C(O)C(C)=C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)C(O)=C1OC
InChI Identifier
InChI=1S/C39H60O4/c1-28(2)16-11-17-29(3)18-12-19-30(4)20-13-21-31(5)22-14-23-32(6)24-15-25-33(7)26-27-35-34(8)36(40)38(42-9)39(43-10)37(35)41/h16,18,20,22,24,26,40-41H,11-15,17,19,21,23,25,27H2,1-10H3/b29-18+,30-20+,31-22+,32-24+,33-26+
InChI KeyDYOSCPIQEYRQEO-LPHQIWJTSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as 2-polyprenyl-6-methoxyphenols. 2-polyprenyl-6-methoxyphenols are compounds containing a polyisoprene chain attached at the 2-position of a 6-methoxyphenol group.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassPolyprenylphenols
Direct Parent2-polyprenyl-6-methoxyphenols
Alternative Parents
Substituents
  • 2-polyprenyl-6-methoxyphenol
  • Polyprenylbenzoquinol
  • Sesterterpenoid
  • Prenylbenzoquinol
  • Ubiquinol skeleton
  • Methoxyphenol
  • O-dimethoxybenzene
  • Dimethoxybenzene
  • Anisole
  • Hydroquinone
  • M-cresol
  • Phenoxy compound
  • O-cresol
  • Phenol ether
  • Methoxybenzene
  • Alkyl aryl ether
  • Phenol
  • Toluene
  • Monocyclic benzene moiety
  • Benzenoid
  • Ether
  • Organooxygen compound
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Endogenous
  • Exogenous
BiofunctionNot Available
ApplicationNot Available
Cellular locations
  • Cell membrane
  • Cytoplasm
  • Membrane
  • Mitochondria
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP8.49ALOGPS
logP11.59ChemAxon
logS-6.2ALOGPS
pKa (Strongest Acidic)10.27ChemAxon
pKa (Strongest Basic)-4.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area58.92 ŲChemAxon
Rotatable Bond Count19ChemAxon
Refractivity191.24 m³·mol⁻¹ChemAxon
Polarizability75.45 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-05dr-2168390000-394910f888dc5f30f46dView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-0002-3128379000-0117b81715e9c07a4c03View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS ("Ubiquinol-6,1TMS,#1" TMS) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0006-0223190000-d20ae1eccfe0bb20cd4cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0002-0669330000-51dfe9ccd5bc50aa4b9dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0fr2-2159340000-bc6056287dbe529b04e3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0006-0000090000-bdbe9cf3cbc85ce127e4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00kf-0000190000-15019b0edbf51d3e63b8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00fr-9200450000-c956803409da86b9394aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0016-5317390000-fe62471cddaa2c9b728aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000t-7619110000-ba2f99a58a62b2b83131View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000y-9613000000-b2ee70ccfb91ef2ecc7aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0006-0000090000-ad84dec376fad5d3e7d7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0007-0611190000-69cb09efd0cb9335d4f6View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0171-3792540000-de6e147147d07d8f5824View in MoNA
1D NMR13C NMR Spectrum (1D, 100 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 1000 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 200 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 300 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 500 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 600 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 700 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 800 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 900 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Not AvailableView in JSpectraViewer
Biological Properties
Cellular Locations
  • Cell membrane
  • Cytoplasm
  • Membrane
  • Mitochondria
Biospecimen LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
HMDB IDHMDB0012299
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB028922
KNApSAcK IDNot Available
Chemspider ID4710167
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5813154
PDB IDNot Available
ChEBI ID52970
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Only showing the first 50 proteins. There are 92 proteins in total.

Enzymes

General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
NDUFS7
Uniprot ID:
P42026
Molecular weight:
23771.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
NDUFS2
Uniprot ID:
P17694
Molecular weight:
52556.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
C5IX89
Molecular weight:
68329.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
MT-ND1
Uniprot ID:
P03887
Molecular weight:
35670.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q45LU7
Molecular weight:
52058.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q6JTG2
Molecular weight:
53800.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
C5IXE1
Molecular weight:
68117.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND2
Uniprot ID:
B1NZU0
Molecular weight:
39284.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q45M50
Molecular weight:
68155.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q45MI0
Molecular weight:
68316.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q3L5H4
Molecular weight:
68270.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q45LG6
Molecular weight:
68285.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1NZ26
Molecular weight:
68270.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
NDUFV2
Uniprot ID:
P04394
Molecular weight:
27308.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q8HBP4
Molecular weight:
33068.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1P0B8
Molecular weight:
68316.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
B1P0I6
Molecular weight:
35652.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND2
Uniprot ID:
Q6JTH0
Molecular weight:
39226.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
Q45MJ0
Molecular weight:
35661.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q7JAL5
Molecular weight:
68286.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q8HC63
Molecular weight:
15084.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
Q6QTH1
Molecular weight:
35656.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
Q45MC5
Molecular weight:
35700.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND6
Uniprot ID:
Q7JAS5
Molecular weight:
19078.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q8HC24
Molecular weight:
32995.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1P0J6
Molecular weight:
68201.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4L
Uniprot ID:
Q3L5T0
Molecular weight:
10765.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
C5IX88
Molecular weight:
52085.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
Q3L5J7
Molecular weight:
35636.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND6
Uniprot ID:
Q85UJ0
Molecular weight:
19044.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
B1P078
Molecular weight:
52113.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND6
Uniprot ID:
B1P0N6
Molecular weight:
19018.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND3
Uniprot ID:
Q7JAS9
Molecular weight:
13055.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1P092
Molecular weight:
68272.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q45MX4
Molecular weight:
52129.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
MT-ND6
Uniprot ID:
P03924
Molecular weight:
19078.0
General function:
Energy production and conversion
Specific function:
Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHB
Uniprot ID:
Q3T189
Molecular weight:
31518.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1P0N5
Molecular weight:
68175.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q6JTD6
Molecular weight:
53814.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q45LK5
Molecular weight:
68313.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND6
Uniprot ID:
B1NZ92
Molecular weight:
19106.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND5
Uniprot ID:
A4ZI01
Molecular weight:
11807.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
MT-ND5
Uniprot ID:
P03920
Molecular weight:
68286.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
Q85E90
Molecular weight:
7295.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized.
Gene Name:
NDUFS1
Uniprot ID:
P15690
Molecular weight:
79442.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND2
Uniprot ID:
Q45M46
Molecular weight:
39220.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
C5IX62
Molecular weight:
52069.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q45MC9
Molecular weight:
52115.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q45LU6
Molecular weight:
68191.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND2
Uniprot ID:
B1P044
Molecular weight:
39224.0

Only showing the first 50 proteins. There are 92 proteins in total.