Record Information
Version1.0
Creation Date2016-09-30 22:46:37 UTC
Update Date2020-06-04 20:14:25 UTC
BMDB IDBMDB0001487
Secondary Accession Numbers
  • BMDB01487
Metabolite Identification
Common NameNADH
DescriptionNadhh, also known as NAD or DPNH, belongs to the class of organic compounds known as (5'->5')-dinucleotides. These are dinucleotides where the two bases are connected via a (5'->5')-phosphodiester linkage. Nadhh exists as a solid, possibly soluble (in water), and a strong basic compound (based on its pKa) molecule. Nadhh exists in all living species, ranging from bacteria to humans. In cattle, nadhh is involved in the metabolic pathway called cancer (via the Warburg effect).
Structure
Thumb
Synonyms
ValueSource
1,4-DIHYDRONICOTINAMIDE adenine dinucleotideChEBI
DPNHChEBI
Nicotinamide adenine dinucleotide (reduced)ChEBI
Reduced nicotinamide adenine dinucleotideChEBI
b-DPNHHMDB
b-NADHHMDB
beta-DPNHHMDB
beta-NADHHMDB
Dihydrocodehydrogenase IHMDB
DihydrocozymaseHMDB
Dihydronicotinamide adenine dinucleotideHMDB
Dihydronicotinamide mononucleotideHMDB
ENADAHMDB
NADH2HMDB
Reduced codehydrogenase IHMDB
Reduced diphosphopyridine nucleotideHMDB
Reduced nicotinamide adenine diphosphateHMDB
Reduced nicotinamide-adenine dinucleotideHMDB
NadideHMDB
Coenzyme IHMDB
DPNHMDB
Diphosphopyridine nucleotideHMDB
Nicotinamide adenine dinucleotideHMDB
Nicotinamide-adenine dinucleotideHMDB
NADHMDB
Nucleotide, diphosphopyridineHMDB
Adenine dinucleotide, dihydronicotinamideHMDB
Dinucleotide, dihydronicotinamide adenineHMDB
Dinucleotide, nicotinamide-adenineHMDB
Chemical FormulaC21H29N7O14P2
Average Molecular Weight665.441
Monoisotopic Molecular Weight665.124771695
IUPAC Name[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4R,5R)-5-(3-carbamoyl-1,4-dihydropyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy})phosphinic acid
Traditional NameNADH
CAS Registry Number58-68-4
SMILES
NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)N2C=NC3=C2N=CN=C3N)[C@@H](O)[C@H]1O
InChI Identifier
InChI=1S/C21H29N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-10)27-3-1-2-9(4-27)18(23)33/h1,3-4,7-8,10-11,13-16,20-21,29-32H,2,5-6H2,(H2,23,33)(H,34,35)(H,36,37)(H2,22,24,25)/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1
InChI KeyBOPGDPNILDQYTO-NNYOXOHSSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as (5'->5')-dinucleotides. These are dinucleotides where the two bases are connected via a (5'->5')-phosphodiester linkage.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
Class(5'->5')-dinucleotides
Sub ClassNot Available
Direct Parent(5'->5')-dinucleotides
Alternative Parents
Substituents
  • (5'->5')-dinucleotide
  • Purine nucleotide sugar
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside monophosphate
  • Nicotinamide-nucleotide
  • Pentose phosphate
  • Pentose-5-phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • N-substituted nicotinamide
  • Organic pyrophosphate
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Dihydropyridine
  • Aminopyrimidine
  • Pyrimidine
  • Imidolactam
  • Monosaccharide
  • N-substituted imidazole
  • Alkyl phosphate
  • Phosphoric acid ester
  • Hydropyridine
  • Organic phosphoric acid derivative
  • Heteroaromatic compound
  • Tetrahydrofuran
  • Imidazole
  • Vinylogous amide
  • Azole
  • Amino acid or derivatives
  • Primary carboxylic acid amide
  • Secondary alcohol
  • Carboxamide group
  • Organoheterocyclic compound
  • Enamine
  • Azacycle
  • Oxacycle
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Alcohol
  • Organic nitrogen compound
  • Organonitrogen compound
  • Organooxygen compound
  • Carbonyl group
  • Organic oxygen compound
  • Organopnictogen compound
  • Primary amine
  • Amine
  • Organic oxide
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
BiofunctionNot Available
ApplicationNot Available
Cellular locations
  • Cytoplasm
  • Endoplasmic reticulum
  • Mitochondria
  • Peroxisome
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-1.4ALOGPS
logP-5.9ChemAxon
logS-2.4ALOGPS
pKa (Strongest Acidic)1.85ChemAxon
pKa (Strongest Basic)4.01ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count16ChemAxon
Hydrogen Donor Count8ChemAxon
Polar Surface Area317.62 ŲChemAxon
Rotatable Bond Count11ChemAxon
Refractivity143 m³·mol⁻¹ChemAxon
Polarizability57.65 ųChemAxon
Number of Rings5ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-002b-1301902000-1a1639ad87019605438cView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_6) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_7) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_8) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_6) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_7) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_8) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_9) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_10) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_11) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_12) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_13) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_14) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_15) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_16) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-00n0-0210192000-bf07b6b154c5778067ceView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0udi-0150291000-84ef746651797f0679a5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-004i-0970000000-0688003193d7fc461235View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT 35V, negativesplash10-00di-0190000000-775fe0fdd09a45ed6a96View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT 35V, negativesplash10-052b-0019600000-3247f3ea96ec22c0e190View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT 35V, negativesplash10-052b-0019600000-c62f2c56a1ce8a2874fbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF 32V, negativesplash10-03di-3212549000-5bb7a136d3e7ca7d8eddView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF 30V, negativesplash10-00ea-1219600000-1e722b38e19c9839c336View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Positivesplash10-00ea-1219600000-25943c109cf639eb967cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Positivesplash10-05dj-5449401000-5b1b9b660a66672f95afView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-03di-0000009000-c3a8f40f5761a0b33639View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-054k-6339301000-c1dfbc12dc893f53f0a4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-03di-0000009000-ced4da70fe9076bb4c29View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-05dj-5449401000-1c9466169a2e22067bd9View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-00kb-0000009000-f46730c3cbc0e239c819View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-0udi-1329230000-4e5a5ac7f7ccdfcf5798View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-00ea-1219600000-1e722b38e19c9839c336View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-0002-0002049000-452a7a02c7cdd0a7db02View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-0931104000-bf6579d19ee9bc297e13View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0901000000-92672b1d4b96838f8652View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-1900000000-ef56d203da65089e145fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03e9-1900207000-f248eb28a7283de7118bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-1900100000-efadf1d6c54e9e86671dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a7i-3900000000-f258fc2bf1d8e54ac6daView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-0000009000-7483a50cefc91ed6c523View in MoNA
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)Not AvailableView in JSpectraViewer
2D NMR[1H, 1H]-TOCSY. Unexported temporarily by An Chi on Oct 15, 2021 until json or nmrML file is generated. 2D NMR Spectrum (experimental)Not AvailableView in JSpectraViewer
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Not AvailableView in JSpectraViewer
Biological Properties
Cellular Locations
  • Cytoplasm
  • Endoplasmic reticulum
  • Mitochondria
  • Peroxisome
Biospecimen Locations
  • Bladder
  • Brain
  • Fibroblasts
  • Liver
  • Longissimus Thoracis Muscle
  • Platelet
  • Semimembranosus Muscle
  • Testis
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BladderExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedNormal
  • Not Applicable
details
BrainExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedNormal
  • Not Applicable
details
FibroblastsExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedNormal
  • Not Applicable
details
LiverDetected and Quantified48 +/- 26 nmol/g of tissueNot SpecifiedNot Specified
Normal
    • Aidin Foroutan, C...
details
LiverDetected but not QuantifiedNot QuantifiedNot SpecifiedNot Specified
Normal
details
Longissimus Thoracis MuscleDetected and Quantified94 +/- 75 nmol/g of tissueNot SpecifiedNot Specified
Normal
    • Aidin Foroutan, C...
details
PlateletExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedNormal
  • Not Applicable
details
Semimembranosus MuscleDetected and Quantified101 +/- 45 nmol/g of tissueNot SpecifiedNot Specified
Normal
    • Aidin Foroutan, C...
details
TestisDetected and Quantified21 +/- 8 nmol/g of tissueNot SpecifiedNot Specified
Normal
    • Aidin Foroutan, C...
details
Abnormal Concentrations
Not Available
HMDB IDHMDB0001487
DrugBank IDDB00157
Phenol Explorer Compound IDNot Available
FooDB IDFDB022649
KNApSAcK IDC00019343
Chemspider ID903
KEGG Compound IDC00004
BioCyc IDNADH
BiGG ID33484
Wikipedia LinkNicotinamide_adenine_dinucleotide
METLIN ID3687
PubChem Compound439153
PDB IDNot Available
ChEBI ID16908
References
Synthesis ReferenceMarek, Miroslav; Vrbova, Eva; Horakova, Irena; Musil, Petr; Kefurt, Karel. NADH manufacture with immobilized Candida formate dehydrogenase. Czech. (1992), 4 pp.
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Only showing the first 50 proteins. There are 182 proteins in total.

Enzymes

General function:
Coenzyme transport and metabolism
Specific function:
NADH-cytochrome b5 reductase involved in endoplasmic reticulum stress response pathway. Plays a critical role in protecting pancreatic beta-cells against oxidant stress, possibly by protecting the cell from excess buildup of reactive oxygen species (ROS) (By similarity).
Gene Name:
CYB5R4
Uniprot ID:
Q32LH7
Molecular weight:
59274.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
NDUFS7
Uniprot ID:
P42026
Molecular weight:
23771.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
NDUFS2
Uniprot ID:
P17694
Molecular weight:
52556.0
General function:
Carbohydrate transport and metabolism
Specific function:
Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules. Also participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (By similarity).
Gene Name:
GAPDH
Uniprot ID:
P10096
Molecular weight:
35868.0
Reactions
D-Glyceraldehyde 3-phosphate + NAD + Hydrogen phosphate → Glyceric acid 1,3-biphosphate + NADHdetails
D-Glyceraldehyde 3-phosphate + NAD → Glyceric acid 1,3-biphosphate + Hydrogen phosphate + NADHdetails
General function:
Carbohydrate transport and metabolism
Specific function:
May play an important role in regulating the switch between different pathways for energy production during spermiogenesis and in the spermatozoon. Required for sperm motility and male fertility (By similarity).
Gene Name:
GAPDHS
Uniprot ID:
Q2KJE5
Molecular weight:
43288.0
General function:
Lipid transport and metabolism
Specific function:
Not Available
Gene Name:
CRYL1
Uniprot ID:
Q8SPX7
Molecular weight:
35072.0
General function:
Energy production and conversion
Specific function:
Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA.
Gene Name:
ALDH6A1
Uniprot ID:
Q07536
Molecular weight:
58063.0
Reactions
Malonic semialdehyde + Coenzyme A + NAD → Acetyl-CoA + Carbon dioxide + NADHdetails
(S)-Methylmalonic acid semialdehyde + Water + NAD + Coenzyme A → Propionyl-CoA + NADH + Hydrogen carbonatedetails
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
C5IX89
Molecular weight:
68329.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
MT-ND1
Uniprot ID:
P03887
Molecular weight:
35670.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q45LU7
Molecular weight:
52058.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q6JTG2
Molecular weight:
53800.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
C5IXE1
Molecular weight:
68117.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND2
Uniprot ID:
B1NZU0
Molecular weight:
39284.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q45M50
Molecular weight:
68155.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q45MI0
Molecular weight:
68316.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q3L5H4
Molecular weight:
68270.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q45LG6
Molecular weight:
68285.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1NZ26
Molecular weight:
68270.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
NDUFV2
Uniprot ID:
P04394
Molecular weight:
27308.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q8HBP4
Molecular weight:
33068.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1P0B8
Molecular weight:
68316.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
B1P0I6
Molecular weight:
35652.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND2
Uniprot ID:
Q6JTH0
Molecular weight:
39226.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
Q45MJ0
Molecular weight:
35661.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q7JAL5
Molecular weight:
68286.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q8HC63
Molecular weight:
15084.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
Q6QTH1
Molecular weight:
35656.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
Q45MC5
Molecular weight:
35700.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND6
Uniprot ID:
Q7JAS5
Molecular weight:
19078.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q8HC24
Molecular weight:
32995.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1P0J6
Molecular weight:
68201.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4L
Uniprot ID:
Q3L5T0
Molecular weight:
10765.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
C5IX88
Molecular weight:
52085.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND1
Uniprot ID:
Q3L5J7
Molecular weight:
35636.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND6
Uniprot ID:
Q85UJ0
Molecular weight:
19044.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
B1P078
Molecular weight:
52113.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND6
Uniprot ID:
B1P0N6
Molecular weight:
19018.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND3
Uniprot ID:
Q7JAS9
Molecular weight:
13055.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1P092
Molecular weight:
68272.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q45MX4
Molecular weight:
52129.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
MT-ND6
Uniprot ID:
P03924
Molecular weight:
19078.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
B1P0N5
Molecular weight:
68175.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND4
Uniprot ID:
Q6JTD6
Molecular weight:
53814.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND5
Uniprot ID:
Q45LK5
Molecular weight:
68313.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND6
Uniprot ID:
B1NZ92
Molecular weight:
19106.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
ND5
Uniprot ID:
A4ZI01
Molecular weight:
11807.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
MT-ND5
Uniprot ID:
P03920
Molecular weight:
68286.0
General function:
Energy production and conversion
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
Q85E90
Molecular weight:
7295.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized.
Gene Name:
NDUFS1
Uniprot ID:
P15690
Molecular weight:
79442.0
General function:
Energy production and conversion
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Gene Name:
ND2
Uniprot ID:
Q45M46
Molecular weight:
39220.0

Only showing the first 50 proteins. There are 182 proteins in total.