You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Bovine Metabolome Database.
Record Information
Version1.0
Creation Date2016-09-30 22:44:24 UTC
Update Date2020-06-04 18:58:17 UTC
BMDB IDBMDB0001341
Secondary Accession Numbers
  • BMDB01341
Metabolite Identification
Common NameADP
DescriptionAdp, also known as H3ADP or magnesium ADP, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. Adp is possibly soluble (in water) and a strong basic compound (based on its pKa). Adp exists in all living species, ranging from bacteria to humans. Adp is a potentially toxic compound.
Structure
Thumb
Synonyms
ValueSource
5'-Adenylphosphoric acidChEBI
Adenosine 5'-diphosphateChEBI
ADENOSINE-5'-diphosphATEChEBI
H3ADPChEBI
5'-AdenylphosphateGenerator
Adenosine 5'-diphosphoric acidGenerator
ADENOSINE-5'-diphosphoric acidGenerator
AdenosindiphosphorsaeureHMDB
Adenosine 5'-pyrophosphateHMDB
Adenosine diphosphateHMDB
Adenosine pyrophosphateHMDB
Adenosine-5-diphosphateHMDB
Adenosine-diphosphateHMDB
5'-Pyrophosphate, adenosineHMDB
Adenosine 5' pyrophosphateHMDB
Diphosphate, adenosineHMDB
Magnesium ADPHMDB
MgADPHMDB
Pyrophosphate, adenosineHMDB
ADP, MagnesiumHMDB
Adenosine diphosphoric acidHMDB
ADPMeSH
Chemical FormulaC10H15N5O10P2
Average Molecular Weight427.2011
Monoisotopic Molecular Weight427.029414749
IUPAC Name[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid
Traditional Nameadenosine-diphosphate
CAS Registry Number58-64-0
SMILES
NC1=NC=NC2=C1N=CN2[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O
InChI Identifier
InChI=1S/C10H15N5O10P2/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(24-10)1-23-27(21,22)25-26(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1
InChI KeyXTWYTFMLZFPYCI-KQYNXXCUSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleotides
Sub ClassPurine ribonucleotides
Direct ParentPurine ribonucleoside diphosphates
Alternative Parents
Substituents
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside monophosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Alkyl phosphate
  • Monosaccharide
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Imidolactam
  • Pyrimidine
  • Azole
  • Heteroaromatic compound
  • Imidazole
  • Tetrahydrofuran
  • Secondary alcohol
  • 1,2-diol
  • Azacycle
  • Oxacycle
  • Organoheterocyclic compound
  • Alcohol
  • Organonitrogen compound
  • Organic oxide
  • Organic nitrogen compound
  • Organooxygen compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Primary amine
  • Amine
  • Hydrocarbon derivative
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
BiofunctionNot Available
ApplicationNot Available
Cellular locations
  • Cytoplasm
  • Endoplasmic reticulum
  • Mitochondria
  • Nucleus
  • Peroxisome
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-1.6ALOGPS
logP-4.7ChemAxon
logS-2.1ALOGPS
pKa (Strongest Acidic)1.77ChemAxon
pKa (Strongest Basic)4ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count12ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area232.6 ŲChemAxon
Rotatable Bond Count6ChemAxon
Refractivity84.94 m³·mol⁻¹ChemAxon
Polarizability34.24 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-004i-5931200000-d741fb674f63c06ad31cView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-004j-9814310000-161f4ca9b901a0d2af95View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-004i-0301900000-f65eba52a00479514d8eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000i-0900000000-cdad0c415295c75e0b67View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-000i-1900000000-1f27fdf6dbd77cbe927dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-0102981000-79c6771fae3255f75825View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-0209000000-24c7ad0d0646786963beView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-0009000000-d266bbe08f0bcb8102b4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0000090000-8a788ef5a2c7ccc534e1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-004i-6900600000-fe2194fd2a27df917e5bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-004i-0209000000-24c7ad0d0646786963beView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-004i-6900600000-fe2194fd2a27df917e5bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-002k-0809500000-7fdcfab442e6730d4feaView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-000b-0809400000-73322c322a5e1ac31635View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-000b-0809200000-2c8f8cd308e88cb92e57View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-0911300000-0b0c309b755e7b5adfdbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0900000000-1d631dbd3ed3927f1194View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-1900000000-0e5039d8b3a6bd79b7d6View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0059-0900700000-ae031f4329b6e38885e8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-3900000000-4c42d87cdde0e1918071View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-004i-9200000000-3eb64003e08db733f0e2View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
Biological Properties
Cellular Locations
  • Cytoplasm
  • Endoplasmic reticulum
  • Mitochondria
  • Nucleus
  • Peroxisome
Biospecimen Locations
  • All Tissues
  • Milk
  • Muscle
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
All TissuesExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedNormal
  • Not Applicable
details
MilkDetected and Quantified0 - 26.600 uMNot SpecifiedNot SpecifiedNormal details
MuscleDetected but not QuantifiedNot QuantifiedNot SpecifiedNot Specified
Normal
    • S. F. Graham, T. ...
details
Abnormal Concentrations
Not Available
HMDB IDHMDB0001341
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB021817
KNApSAcK IDC00019353
Chemspider ID5800
KEGG Compound IDC00008
BioCyc IDADP
BiGG ID33496
Wikipedia LinkADP
METLIN ID6175
PubChem Compound6022
PDB IDNot Available
ChEBI ID16761
References
Synthesis ReferenceYamagata, Yukio. Prebiotic formation of ADP and ATP from AMP, calcium phosphates and cyanate in aqueous solution. Origins of Life and Evolution of the Biosphere (1999), 29(5), 511-520.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Gil A, Sanchez-Medina F: Acid-soluble nucleotides of cow's, goat's and sheep's milks, at different stages of lactation. J Dairy Res. 1981 Feb;48(1):35-44. [PubMed:7196410 ]

Only showing the first 50 proteins. There are 213 proteins in total.

Enzymes

General function:
Involved in ATP binding
Specific function:
Kinase that can phosphorylate various inositol polyphosphate such as Ins(3,4,5,6)P4 or Ins(1,3,4)P3. Phosphorylates Ins(3,4,5,6)P4 at position 1 to form Ins(1,3,4,5,6)P5. This reaction is thought to have regulatory importance, since Ins(3,4,5,6)P4 is an inhibitor of plasma membrane Ca(2+)-activated Cl(-) channels, while Ins(1,3,4,5,6)P5 is not. Also acts as an inositol polyphosphate phosphatase that dephosphorylate Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 to Ins(1,3,4)P3, and Ins(1,3,4,5,6)P5 to Ins(3,4,5,6)P4. May also act as an isomerase that interconverts the inositol tetrakisphosphate isomers Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 in the presence of ADP and magnesium. Probably acts as the rate-limiting enzyme of the InsP6 pathway. Modifies TNF-alpha-induced apoptosis by interfering with the activation of TNFRSF1A-associated death domain (By similarity). Also phosphorylates Ins(1,3,4)P3 on O-5 and O-6 to form Ins(1,3,4,6)P4, an essential molecule in the hexakisphosphate (InsP6) pathway. Plays an important role in MLKL-mediated necroptosis. Produces highly phosphorylated inositol phosphates such as inositolhexakisphosphate (InsP6) which bind to MLKL mediating the release of an N-terminal auto-inhibitory region leading to its activation. Essential for activated phospho-MLKL to oligomerize and localize to the cell membrane during necroptosis (By similarity).
Gene Name:
ITPK1
Uniprot ID:
P0C0T1
Molecular weight:
45842.0
Reactions
Inositol 1,3,4,5,6-pentakisphosphate + ADP → D-Myo-inositol 3,4,5,6-tetrakisphosphate + Adenosine triphosphatedetails
Adenosine triphosphate + Inositol 1,3,4-trisphosphate → ADP + 1D-Myo-inositol 1,3,4,6-tetrakisphosphatedetails
Inositol 1,3,4-trisphosphate + Adenosine triphosphate → Inositol 1,3,4,5-tetraphosphate + ADPdetails
General function:
Lipid transport and metabolism
Specific function:
Performs the first committed step in the biosynthesis of isoprenes.
Gene Name:
MVD
Uniprot ID:
Q0P570
Molecular weight:
43732.0
Reactions
Adenosine triphosphate + 5-Diphosphomevalonic acid → ADP + Hydrogen phosphate + Isopentenyl pyrophosphate + Carbon dioxidedetails
General function:
Nucleotide transport and metabolism
Specific function:
May provide the missing metabolic reaction required to link the mitochondria and the cytoplasm in the mammalian model of one-carbon folate metabolism in embryonic an transformed cells complementing thus the enzymatic activities of MTHFD2.
Gene Name:
MTHFD1L
Uniprot ID:
Q0VCR7
Molecular weight:
105227.0
General function:
Posttranslational modification, protein turnover, chaperones
Specific function:
ADP-ribose glycohydrolase that preferentially hydrolyzes the scissile alpha-O-linkage attached to the anomeric C1'' position of ADP-ribose and acts on different substrates, such as proteins ADP-ribosylated on serine, free poly(ADP-ribose) and O-acetyl-ADP-D-ribose. Specifically acts as a serine mono-ADP-ribosylhydrolase by mediating the removal of mono-ADP-ribose attached to serine residues on proteins, thereby playing a key role in DNA damage response. Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage. Does not hydrolyze ADP-ribosyl-arginine, -cysteine, -diphthamide, or -asparagine bonds. Also able to degrade protein free poly(ADP-ribose), which is synthesized in response to DNA damage: free poly(ADP-ribose) acts as a potent cell death signal and its degradation by ADPRHL2 protects cells from poly(ADP-ribose)-dependent cell death, a process named parthanatos. Also hydrolyzes free poly(ADP-ribose) in mitochondria. Specifically digests O-acetyl-ADP-D-ribose, a product of deacetylation reactions catalyzed by sirtuins. Specifically degrades 1''-O-acetyl-ADP-D-ribose isomer, rather than 2''-O-acetyl-ADP-D-ribose or 3''-O-acetyl-ADP-D-ribose isomers.
Gene Name:
ADPRS
Uniprot ID:
Q3SYV9
Molecular weight:
39221.0
General function:
Involved in ADP-ribose diphosphatase activity
Specific function:
Hydrolyzes ADP-ribose, IDP-ribose, CDP-glycerol, CDP-choline and CDP-ethanolamine, but not other non-reducing ADP-sugars or CDP-glucose. May be involved in immune cell signaling as suggested by the second-messenger role of ADP-ribose, which activates TRPM2 as a mediator of oxidative/nitrosative stress (By similarity).
Gene Name:
ADPRM
Uniprot ID:
A7YY53
Molecular weight:
39235.0
General function:
Posttranslational modification, protein turnover, chaperones
Specific function:
Specifically acts as a arginine mono-ADP-ribosylhydrolase by mediating the removal of mono-ADP-ribose attached to arginine residues on proteins.
Gene Name:
ADPRH
Uniprot ID:
Q32KR8
Molecular weight:
39152.0
General function:
Involved in poly(ADP-ribose) glycohydrolase activity
Specific function:
Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15658938). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers. It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated. Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG. Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress. Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters. Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5. Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (By similarity).
Gene Name:
PARG
Uniprot ID:
O02776
Molecular weight:
110837.0
General function:
Involved in ATP binding
Specific function:
Retina-specific kinase involved in the shutoff of the photoresponse and adaptation to changing light conditions via cone opsin phosphorylation, including rhodopsin (RHO).
Gene Name:
GRK7
Uniprot ID:
Q8WMV0
Molecular weight:
62125.0
General function:
Defense mechanisms
Specific function:
Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis. Mediates the transport of chloride ions across the cell membrane (By similarity). Channel activity is coupled to ATP hydrolysis. The ion channel is also permeable to HCO(3-); selectivity depends on the extracellular chloride concentration. Exerts its function also by modulating the activity of other ion channels and transporters. Contributes to the regulation of the pH and the ion content of the epithelial fluid layer. Modulates the activity of the epithelial sodium channel (ENaC) complex, in part by regulating the cell surface expression of the ENaC complex. May regulate bicarbonate secretion and salvage in epithelial cells by regulating the transporter SLC4A7. Can inhibit the chloride channel activity of ANO1 (By similarity). Plays a role in the chloride and bicarbonate homeostasis during sperm epididymal maturation and capacitation (By similarity).
Gene Name:
CFTR
Uniprot ID:
P35071
Molecular weight:
167758.0
General function:
Carbohydrate transport and metabolism
Specific function:
Synthesis and degradation of fructose 2,6-bisphosphate.
Gene Name:
PFKFB1
Uniprot ID:
P49872
Molecular weight:
54657.0
General function:
Involved in ATP binding
Specific function:
Non-receptor tyrosine-protein kinase that plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance. Inactive FYN is phosphorylated on its C-terminal tail within the catalytic domain. Following activation by PKA, the protein subsequently associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, activation and targeting to focal adhesions. Involved in the regulation of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin). Regulates cytoskeletal remodeling by phosphorylating several proteins including the actin regulator WAS and the microtubule-associated proteins MAP2 and MAPT. Promotes cell survival by phosphorylating AGAP2/PIKE-A and preventing its apoptotic cleavage. Participates in signal transduction pathways that regulate the integrity of the glomerular slit diaphragm (an essential part of the glomerular filter of the kidney) by phosphorylating several slit diaphragm components including NPHS1, KIRREL1 and TRPC6. Plays a role in neural processes by phosphorylating DPYSL2, a multifunctional adapter protein within the central nervous system, ARHGAP32, a regulator for Rho family GTPases implicated in various neural functions, and SNCA, a small pre-synaptic protein. Participates in the downstream signaling pathways that lead to T-cell differentiation and proliferation following T-cell receptor (TCR) stimulation. Phosphorylates PTK2B/PYK2 in response to T-cell receptor activation. Also participates in negative feedback regulation of TCR signaling through phosphorylation of PAG1, thereby promoting interaction between PAG1 and CSK and recruitment of CSK to lipid rafts. CSK maintains LCK and FYN in an inactive form. Promotes CD28-induced phosphorylation of VAV1. In mast cells, phosphorylates CLNK after activation of immunoglobulin epsilon receptor signaling (By similarity).
Gene Name:
FYN
Uniprot ID:
A0JNB0
Molecular weight:
60718.0
General function:
Signal transduction mechanisms
Specific function:
Catalyzes the phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex, the key regulatory enzyme of the valine, leucine and isoleucine catabolic pathways. Key enzyme that regulate the activity state of the BCKD complex.
Gene Name:
BCKDK
Uniprot ID:
Q2KJG8
Molecular weight:
46438.0
General function:
Involved in ATP binding
Specific function:
Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85 kDa regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFIR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGF1R signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGF1R. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGF1R. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGF1R (By similarity). When present in a hybrid receptor with INSR, binds IGF1 (By similarity).
Gene Name:
IGF1R
Uniprot ID:
Q05688
Molecular weight:
72511.0
General function:
Inorganic ion transport and metabolism
Specific function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A1
Uniprot ID:
Q08DA1
Molecular weight:
112643.0
General function:
Involved in activin receptor activity
Specific function:
On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin A, activin B and inhibin A. Mediates induction of adipogenesis by GDF6.
Gene Name:
ACVR2A
Uniprot ID:
Q28043
Molecular weight:
57952.0
General function:
Inorganic ion transport and metabolism
Specific function:
ATPase required for the post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum. Recognizes and selectively binds the transmembrane domain of TA proteins in the cytosol. This complex then targets to the endoplasmic reticulum by membrane-bound receptors, where the tail-anchored protein is released for insertion. This process is regulated by ATP binding and hydrolysis. ATP binding drives the homodimer towards the closed dimer state, facilitating recognition of newly synthesized TA membrane proteins. ATP hydrolysis is required for insertion. Subsequently, the homodimer reverts towards the open dimer state, lowering its affinity for the membrane-bound receptor, and returning it to the cytosol to initiate a new round of targeting.
Gene Name:
GET3
Uniprot ID:
A5PJI5
Molecular weight:
38793.0
General function:
Amino acid transport and metabolism
Specific function:
Glutamine synthetase that catalyzes the ATP-dependent conversion of glutamate and ammonia to glutamine (By similarity). Its role depends on tissue localization: in the brain, it regulates the levels of toxic ammonia and converts neurotoxic glutamate to harmless glutamine, whereas in the liver, it is one of the enzymes responsible for the removal of ammonia (By similarity). Essential for proliferation of fetal skin fibroblasts. Independently of its glutamine synthetase activity, required for endothelial cell migration during vascular development: acts by regulating membrane localization and activation of the GTPase RHOJ, possibly by promoting RHOJ palmitoylation. May act as a palmitoyltransferase for RHOJ: able to autopalmitoylate and then transfer the palmitoyl group to RHOJ (By similarity). Plays a role in ribosomal 40S subunit biogenesis (By similarity).
Gene Name:
GLUL
Uniprot ID:
P15103
Molecular weight:
42031.0
General function:
Involved in activin receptor activity
Specific function:
Transmembrane serine/threonine kinase activin type-2 receptor forming an activin receptor complex with activin type-1 serine/threonine kinase receptors (ACVR1, ACVR1B or ACVR1c). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine role in follicular development in the ovary. Within the receptor complex, the type-2 receptors act as a primary activin receptors (binds activin-A/INHBA, activin-B/INHBB as well as inhibin-A/INHA-INHBA). The type-1 receptors like ACVR1B act as downstream transducers of activin signals. Activin binds to type-2 receptor at the plasma membrane and activates its serine-threonine kinase. The activated receptor type-2 then phosphorylates and activates the type-1 receptor. Once activated, the type-1 receptor binds and phosphorylates the SMAD proteins SMAD2 and SMAD3, on serine residues of the C-terminal tail. Soon after their association with the activin receptor and subsequent phosphorylation, SMAD2 and SMAD3 are released into the cytoplasm where they interact with the common partner SMAD4. This SMAD complex translocates into the nucleus where it mediates activin-induced transcription. Inhibitory SMAD7, which is recruited to ACVR1B through FKBP1A, can prevent the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. Activin signal transduction is also antagonized by the binding to the receptor of inhibin-B via the IGSF1 inhibin coreceptor (By similarity).
Gene Name:
ACVR2B
Uniprot ID:
Q95126
Molecular weight:
57569.0
General function:
Inorganic ion transport and metabolism
Specific function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
Gene Name:
ATP2C1
Uniprot ID:
P57709
Molecular weight:
104780.0
General function:
Carbohydrate transport and metabolism
Specific function:
Synthesis and degradation of fructose 2,6-bisphosphate.
Gene Name:
PFKFB3
Uniprot ID:
Q28901
Molecular weight:
53584.0
General function:
Inorganic ion transport and metabolism
Specific function:
Not Available
Gene Name:
ATP9B
Uniprot ID:
A1A4J6
Molecular weight:
127457.0
General function:
Inorganic ion transport and metabolism
Specific function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients (By similarity).
Gene Name:
ATP1A2
Uniprot ID:
A2VDL6
Molecular weight:
112179.0
General function:
Carbohydrate transport and metabolism
Specific function:
Synthesis and degradation of fructose 2,6-bisphosphate.
Gene Name:
PFKFB2
Uniprot ID:
P26285
Molecular weight:
60811.0
General function:
Involved in ATP binding
Specific function:
Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them.
Gene Name:
GRK3
Uniprot ID:
P26818
Molecular weight:
79804.0
General function:
Involved in ATP binding
Specific function:
Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and G1-S transition via association with multiple interphase cyclins. Required in higher cells for entry into S-phase and mitosis. Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CENPA, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, LMNA, LMNB, LMNC, LBR, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, TPPP, UL40/R2, RAB4A, RAP1GAP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SAMHD1, SIRT2 and RUNX2. CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs. Essential for early stages of embryonic development. During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation. Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis. Inactivated by PKR/EIF2AK2- and WEE1-mediated phosphorylation upon DNA damage to stop cell cycle and genome replication at the G2 checkpoint thus facilitating DNA repair. Reactivated after successful DNA repair through WIP1-dependent signaling leading to CDC25A/B/C-mediated dephosphorylation and restoring cell cycle progression. In proliferating cells, CDK1-mediated FOXO1 phosphorylation at the G2-M phase represses FOXO1 interaction with 14-3-3 proteins and thereby promotes FOXO1 nuclear accumulation and transcription factor activity, leading to cell death of postmitotic neurons. The phosphorylation of beta-tubulins regulates microtubule dynamics during mitosis. NEDD1 phosphorylation promotes PLK1-mediated NEDD1 phosphorylation and subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation. In addition, CC2D1A phosphorylation regulates CC2D1A spindle pole localization and association with SCC1/RAD21 and centriole cohesion during mitosis. The phosphorylation of Bcl-xL/BCL2L1 after prolongated G2 arrest upon DNA damage triggers apoptosis. In contrast, CASP8 phosphorylation during mitosis prevents its activation by proteolysis and subsequent apoptosis. This phosphorylation occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. CALD1 phosphorylation promotes Schwann cell migration during peripheral nerve regeneration. CDK1-cyclin-B complex phosphorylates NCKAP5L and mediates its dissociation from centrosomes during mitosis. Regulates the amplitude of the cyclic expression of the core clock gene ARNTL/BMAL1 by phosphorylating its transcriptional repressor NR1D1, and this phosphorylation is necessary for SCF(FBXW7)-mediated ubiquitination and proteasomal degradation of NR1D1 (By similarity). Interacts with proteasome subunit PSMA8; to participate in meiosis progression during spermatogenesis (By similarity).
Gene Name:
CDK1
Uniprot ID:
P48734
Molecular weight:
34025.0
General function:
Coenzyme transport and metabolism
Specific function:
Catalyzes conversion of folates to polyglutamate derivatives allowing concentration of folate compounds in the cell and the intracellular retention of these cofactors, which are important substrates for most of the folate-dependent enzymes that are involved in one-carbon transfer reactions involved in purine, pyrimidine and amino acid synthesis.
Gene Name:
FPGS
Uniprot ID:
A6H751
Molecular weight:
64900.0
Reactions
Tetrahydrofolic acid + L-Glutamic acid + Adenosine triphosphate → Tetrahydrofolyl-[Glu](2) + ADP + Hydrogen phosphatedetails
Tetrahydrofolyl-[Glu](2) + Adenosine triphosphate + L-Glutamic acid → Tetrahydrofolyl-[Glu](n) + ADP + Hydrogen phosphatedetails
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
ITK
Uniprot ID:
A7Z039
Molecular weight:
72069.0
General function:
Energy production and conversion
Specific function:
Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis.
Gene Name:
ACLY
Uniprot ID:
Q32PF2
Molecular weight:
119789.0
Reactions
Coenzyme A + Citric acid + Adenosine triphosphate → Oxalacetic acid + ADP + Acetyl-CoAdetails
General function:
Involved in ATP binding
Specific function:
Serine/threonine kinase that phosphorylates preferentially the activated forms of a variety of G-protein-coupled receptors (GPCRs). Such receptor phosphorylation initiates beta-arrestin-mediated receptor desensitization, internalization, and signaling events leading to their down-regulation. Phosphorylates a variety of GPCRs, including adrenergic receptors (Beta-2 adrenergic receptor), muscarinic acetylcholine receptors (more specifically Gi-coupled M2/M4 subtypes), dopamine receptors and opioid receptors. In addition to GPCRs, also phosphorylates various substrates: Hsc70-interacting protein/ST13, TP53/p53, HDAC5, and arrestin-1/ARRB1. Phosphorylation of ARRB1 by GRK5 inhibits G-protein independent MAPK1/MAPK3 signaling downstream of 5HT4-receptors. Phosphorylation of HDAC5, a repressor of myocyte enhancer factor 2 (MEF2) leading to nuclear export of HDAC5 and allowing MEF2-mediated transcription. Phosphorylation of TP53/p53, a crucial tumor suppressor, inhibits TP53/p53-mediated apoptosis. Phosphorylation of ST13 regulates internalization of the chemokine receptor. Phosphorylates rhodopsin (RHO) (in vitro) and a non G-protein-coupled receptor, LRP6 during Wnt signaling (in vitro) (By similarity).
Gene Name:
GRK5
Uniprot ID:
P43249
Molecular weight:
67889.0
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
YES1
Uniprot ID:
A7MB57
Molecular weight:
60597.0
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
FGR
Uniprot ID:
A5PKG9
Molecular weight:
59332.0
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
NTRK3
Uniprot ID:
A8KC75
Molecular weight:
43129.0
General function:
Involved in ATP binding
Specific function:
Non-receptor tyrosine-protein and serine/threonine-protein kinase that is implicated in cell spreading and migration, cell survival, cell growth and proliferation. Transduces extracellular signals to cytosolic and nuclear effectors. Phosphorylates AKT1, AR, MCF2, WASL and WWOX. Implicated in trafficking and clathrin-mediated endocytosis through binding to epidermal growth factor receptor (EGFR) and clathrin. Binds to both poly- and mono-ubiquitin and regulates ligand-induced degradation of EGFR, thereby contributing to the accumulation of EGFR at the limiting membrane of early endosomes. Downstream effector of CDC42 which mediates CDC42-dependent cell migration via phosphorylation of BCAR1. May be involved both in adult synaptic function and plasticity and in brain development. Activates AKT1 by phosphorylating it on 'Tyr-176'. Phosphorylates AR on 'Tyr-267' and 'Tyr-363' thereby promoting its recruitment to androgen-responsive enhancers (AREs). Phosphorylates WWOX on 'Tyr-287'. Phosphorylates MCF2, thereby enhancing its activity as a guanine nucleotide exchange factor (GEF) toward Rho family proteins. Contributes to the control of AXL receptor levels. Confers metastatic properties on cancer cells and promotes tumor growth by negatively regulating tumor suppressor such as WWOX and positively regulating pro-survival factors such as AKT1 and AR (By similarity).
Gene Name:
TNK2
Uniprot ID:
Q17R13
Molecular weight:
114868.0
General function:
Involved in ATP binding
Specific function:
Receptor-proximal protein kinase regulating integrin-mediated signal transduction. May act as a mediator of inside-out integrin signaling. Focal adhesion protein part of the complex ILK-PINCH. This complex is considered to be one of the convergence points of integrin- and growth factor-signaling pathway. Could be implicated in mediating cell architecture, adhesion to integrin substrates and anchorage-dependent growth in epithelial cells. Phosphorylates beta-1 and beta-3 integrin subunit on serine and threonine residues, but also AKT1 and GSK3B.
Gene Name:
ILK
Uniprot ID:
Q3SWY2
Molecular weight:
51447.0
General function:
Energy production and conversion
Specific function:
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits.
Gene Name:
ATP5F1B
Uniprot ID:
P00829
Molecular weight:
56284.0
General function:
Inorganic ion transport and metabolism
Specific function:
Not Available
Gene Name:
ATP10D
Uniprot ID:
A7Z029
Molecular weight:
159526.0
General function:
Inorganic ion transport and metabolism
Specific function:
May play a role in the transport of aminophospholipids from the outer to the inner leaflet of various membranes and the maintenance of asymmetric distribution of phospholipids, mainly in secretory vesicles.
Gene Name:
ATP8A1
Uniprot ID:
Q29449
Molecular weight:
130026.0
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
GSS
Uniprot ID:
Q5EAC2
Molecular weight:
52066.0
Reactions
Adenosine triphosphate + Gamma-Glutamylcysteine + Glycine → ADP + Hydrogen phosphate + Glutathionedetails
Gamma-Glutamylcysteine + Adenosine triphosphate + Glycine → Glutathione + ADP + Hydrogen phosphatedetails
General function:
Involved in ATP binding
Specific function:
Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR and the negative elongation factors DSIF and NELF. Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis. P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export. Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing. The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro. Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage. In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6. Promotes cardiac myocyte enlargement. RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription. AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect. The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation.
Gene Name:
CDK9
Uniprot ID:
Q5EAB2
Molecular weight:
42748.0
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
CSF1R
Uniprot ID:
A7Z067
Molecular weight:
107353.0
General function:
Involved in ATP binding
Specific function:
Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them. Key regulator of LPAR1 signaling. Competes with RALA for binding to LPAR1 thus affecting the signaling properties of the receptor. Desensitizes LPAR1 and LPAR2 in a phosphorylation-independent manner (By similarity). Positively regulates ciliary smoothened (SMO)-dependent Hedgehog (Hh) signaling pathway by facilitating the trafficking of SMO into the cilium and the stimulation of SMO activity (PubMed:21659505).
Gene Name:
GRK2
Uniprot ID:
P21146
Molecular weight:
79647.0
General function:
Involved in ATP binding
Specific function:
Non-receptor tyrosine-protein kinase that plays an important role in the regulation of cell growth, differentiation, migration and immune response. Phosphorylates tyrosine residues located in the C-terminal tails of Src-family kinases (SFKs) including LCK, SRC, HCK, FYN, LYN, CSK or YES1. Upon tail phosphorylation, Src-family members engage in intramolecular interactions between the phosphotyrosine tail and the SH2 domain that result in an inactive conformation. To inhibit SFKs, CSK is recruited to the plasma membrane via binding to transmembrane proteins or adapter proteins located near the plasma membrane. Suppresses signaling by various surface receptors, including T-cell receptor (TCR) and B-cell receptor (BCR) by phosphorylating and maintaining inactive several positive effectors such as FYN or LCK (By similarity).
Gene Name:
CSK
Uniprot ID:
Q0VBZ0
Molecular weight:
50633.0
General function:
Lipid transport and metabolism
Specific function:
Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA.
Gene Name:
ACACA
Uniprot ID:
Q9TTS3
Molecular weight:
265303.0
Reactions
Adenosine triphosphate + Hydrogen carbonate + Acetyl-CoA → Hydrogen phosphate + ADP + Malonyl-CoAdetails
General function:
Involved in activin receptor activity, type I
Specific function:
On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for TGF-beta. May also bind activin.
Gene Name:
ACVR1
Uniprot ID:
Q28041
Molecular weight:
57190.0
General function:
Inorganic ion transport and metabolism
Specific function:
Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (PubMed:22387132). Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A1
Uniprot ID:
Q0VCY0
Molecular weight:
109290.0
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
JAK1
Uniprot ID:
A3KMY9
Molecular weight:
88606.0
General function:
Involved in ATP binding
Specific function:
This is one of the 2 subunits of the biotin-dependent propionyl-CoA carboxylase (PCC), a mitochondrial enzyme involved in the catabolism of odd chain fatty acids, branched-chain amino acids isoleucine, threonine, methionine, and valine and other metabolites. Propionyl-CoA carboxylase catalyzes the carboxylation of propionyl-CoA/propanoyl-CoA to D-methylmalonyl-CoA/(S)-methylmalonyl-CoA (By similarity). Within the holoenzyme, the alpha subunit catalyzes the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain, while the beta subunit then transfers the carboxyl group from carboxylated biotin to propionyl-CoA (By similarity). Propionyl-CoA carboxylase also significantly acts on butyryl-CoA/butanoyl-CoA, which is converted to ethylmalonyl-CoA/(2S)-ethylmalonyl-CoA (By similarity). Other alternative minor substrates include (2E)-butenoyl-CoA/crotonoyl-CoA (By similarity).
Gene Name:
PCCB
Uniprot ID:
Q2TBR0
Molecular weight:
58311.0
Reactions
3-Methylcrotonyl-CoA + Adenosine triphosphate + Hydrogen carbonate → 3-Methylglutaconyl-CoA + ADPdetails
Propionyl-CoA + Adenosine triphosphate + Hydrogen carbonate → S-Methylmalonyl-CoA + ADP + Hydrogen phosphatedetails
Propionyl-CoA + Hydrogen carbonate + Adenosine triphosphate → S-Methylmalonyl-CoA + ADP + Hydrogendetails
General function:
Involved in ATP binding
Specific function:
Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa (By similarity).
Gene Name:
CKMT2
Uniprot ID:
Q3ZBP1
Molecular weight:
47231.0
General function:
Involved in ATP binding
Specific function:
Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa (By similarity).
Gene Name:
CKB
Uniprot ID:
Q5EA61
Molecular weight:
42719.0
Reactions
Adenosine triphosphate + Creatine → ADP + Phosphocreatinedetails
General function:
Involved in ATP binding
Specific function:
Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa (By similarity).
Gene Name:
CKMT1
Uniprot ID:
Q9TTK8
Molecular weight:
46897.0

Only showing the first 50 proteins. There are 213 proteins in total.